• Disease-free areas can become infected through infected planting materials, contaminated run-off water, contaminated farm tools such as knives and hoes used for cutting tubers, and through contaminated soil sticking to farm tools and shoes.

• Wash tools, shoes and boots with 0.5% household bleach or peroxygen products while removing all atypical plants and weeds from the seed plots (Fig. 3). These seed tubers could be then used for subsequent seed multiplication or for potato ware production.

• Avoid positive selection in a field with more than a few wilting plants (more than 2% of all plants wilting). If positive selection is carried out in a field with few wilting plants, avoid all plants closer than 1 meter to a wilting plant.

Crop rotation and intercropping
• Follow crop rotation with the non-host crops such as beans, barley, wheat, onion, shallot, carrot for minimum one season if there is no bacterial wilt, two seasons if less than 3% of plants are in the fields are wilting, and three to five seasons if more than 5% of plants are wilting.

• Intercropping or relay cropping of potato into cereal and legume cropping systems also helps to reduce the buildup of pathogen in the field.

• Flushing of seed potato field with new seed stocks after five generations of the same seed source is very important. While producing same seed source for several generations, seed producers are required to start over again with new seed stocks to prevent the buildup of soil borne pathogens in the soil. By pegging plants without disease symptoms for seed selection, the number of sick plants in the next crop can be reduced (Fig. 4).

• Positive selection involves pegging the healthy looking plants at the flowering stage and checking the health of pegged plants 2 weeks later and removing the pegs from plants that have developed disease symptoms. Harvest the pegged plants one by one before the rest of the field, and select the small tubers of 30–60-mm diameter and store them separately in clean disinfected containers (Fig. 4). These seed tubers could be used for subsequent seed multiplication or for potato ware production.

• Avoid positive selection in a field with more than a few wilting plants (more than 2% of all plants wilting). If positive selection is carried out in a field with few wilting plants, avoid all plants closer than 1 meter to a wilting plant.

Introduction
Bacterial wilt, caused by Ralstonia solanacearum is a serious disease of potato in temperate and subtropical climates. It primarily infects host plants through the roots by penetrating the host through microscopic wounds caused by the emergence of lateral roots. Other common causes of root wounding are transplanting, nematodes, insects and agricultural equipment that allow the bacterium to enter the plant. Once infection has occurred in the roots, the bacterium colonizes the cortex and makes its way towards the xylem vessel, from where it rapidly spreads in the plant. Bacterial masses prevent water-flow from roots to the leaves, resulting in plant wilting.

The containment strategy guide is made possible by the support of the American People through the United States Agency for International Development (USAID). The contents of this document are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government.
Negative selection
• Positive selection means selecting healthy infected and symptomatic plants should be
• Negative selection means roguing out plants
• Avoid run-off from infected fields. The best
• Wash tools, shoes and boots with 0.5% household bleach or peroxygen products while
bacteria by increasing the soil pH.
• disinfectant and are known to kill the or lime (1 hand-full). Ashes and lime work as
the soil in the holes where the plants are
• removed with its rrot system, tubers, stolons
• burnt or buried as well.
• one-meter underground. The /f_ive neighboring plants should also be rogued out and
• out the whole infected plant with its root
• system, tubers, stolons and the soil around it should be collected and buried at least
• plot.
• Making ridges or contours also limits runoff.
• hills or on the slopes above ware potato
• way is to produce seed potato on the top of
• farmers select seed from their own potato crop, thereby mixing sick and healthy tubers.
• contaminated run-off water, contaminated farm tools such as knives and hoes used for
• contaminated seed source is very important. While producing same seed source for several
• shallot, carrot for minimum one season if there is no bacterial wilt, two seasons if
• wilting plants, avoid all plants closer than 1 meter to a wilting plant.
• 2% of all plants wilting). If positive selection is carried out in a field with few
• generation of seed potato. Bacterial wilt is a

Crop rotation and intercropping
• Intercropping or relay cropping of potato into cereal and legume cropping
• Follow crop rotation with the non-host crops such as beans, barley, wheat, onion,
• Avoid positive selection in a field with more than a few wilting plants (more than
• than 5% of plants are in the fields are wilting, and three to five seasons if more
• if less than 5% of plants are in the fields are wilting, and three to five seasons if more
• per season). If more than 5% of plants are wilting and the disease is spreading, extension agents should follow below strategy to contain and manage bacterial wilt in
• potato /f_ield.
• Extension agents should follow below strategy to contain and manage bacterial wilt in
• potato /f_ield.
• R. solanacearum
• in potato crops. Farmers and extension agents should follow below strategy to contain and manage bacterial wilt in potato /f_ield.
• Educate farmers for safe production practices
• Training farmers in safe production practices such as sanitation and cultivation practices, removal of potato haulms and rotted tubers, weeding, rouging volunteer and wilted potato plants, farm tools decontamination, use of uncontaminated water etc., which can prevent the introduction and establishment of the pathogen in the field.
• Learn to recognize problem, symptoms and signs
• Proper disease control tactics cannot be implemented unless the correct disease problems are identified. Accurate diagnosis results in using the right management tactic at the right time and place. Therefore, accurate and early diagnosis is necessary for employing a successful management program for bacterial wilt.
• Use disease free seed potato and plant them in BW-free areas
• Always use BW free seed potato and plant them in disease free areas or in a plot where potato or crops from Solanaceae family has not been grown before.
• Signs and Symptoms
Above-ground symptoms include wilting of 1-2 leaves on young plants during the heat of the day (Fig. 1. A). Such plants tend to recover at night. In a severe case, the plant will eventually fail to recover and die (Fig. 1. B). Unlike the fungal wilts, the leaves remain green in bacterial wilt.

Figure 1. (A) whole potato plant wilting and (B) partial wilting.
When an infected stem is cut across and the cut ends held together for a few seconds, a thin thread of ooze can be seen as the cut ends are slowly separated. If one of the cut ends is suspended in clear water, a white and milky stream of bacterial cells and slime will flow from vascular system of the infected stem into the water in 3-5 mm (Fig 2).

Figure 2. Steps in vascular flow test
Tubers may rot and a brownish discoloration of the vascular ring could be seen in the cross-section of the tuber (Fig. 3 A). Slimy, sticky pus may exude from the ring when the tuber is squeezed (Fig. 3 B, D). Pale ooze may exude from eyes and heel end of potato tubers (Fig. 3 C). Soil will adhere to the oozing eyes (Fig. 3 C)

Figure 3. Oozing symptoms, (A), rotting of the tubers, (B) ooze coming from the vascular ring, (C) oozing eyes and soil sticking to the eyes and (D) vascular browning.

Host range
The pathogen has wide host range, and can infect more than 200 plant species in 33 different plant families including tomato, tobacco, eggplant, chili, peppers, jute and geranium. A few ornamentals and some common solanaceous weed species, including bittersweet (Celastrus orbiculatus), nightshade (Solanum nigrum), jimsonweed (Datura stramonium) and stinging nettle (Urtica dioica) are also hosts, and are commonly found in Ethiopian environment.

Survival
Ralstonia solanacearum can survive for various periods of time (few months to years) in infected soil or water, forming a reservoir for source of inoculum for the pathogens. It can survival during the winter in semi-aquatic weeds, in plant debris or in the rhizosphere of non-host plants that act as reservoirs for the pathogen and release bacteria when conditions become favorable for the bacterium.

Dissemination
It is disseminated by contaminated soil, water, equipment, and farmers and/or by transplanting infected plants, tubers, or cuttings. Infected seed potatoes are an important factor in the distribution of the disease from one field to another. Dissemination of the bacterium in potato occurs from plant to plant when bacteria move from the roots of infected plants or weeds to roots of nearby healthy plants in the soil, usually by water movement. It can also spread from infested to healthy fields by soil transfer on machinery and surface runoff water after irrigation or rainfall. It also can be disseminated from infected ponds or rivers to healthy fields through waterways. In cool conditions, infected potato plants may harbor the bacterium without exhibiting symptoms and transmit the disease to progeny tubers, resulting in severe outbreaks if grown under warmer conditions.

Management
Bacterial wilt is difficult to control (or eradicate) because of its soil-borne nature and persistence in the soil for a long time. No single management strategy effectively prevents losses caused by bacterial wilt. There is no cure once a potato plant or tuber is infected with bacterial wilt. This means that control measures should be applied to prevent initial infection. When infection has already occurred, then measures are needed to contain the disease. Therefore, the containment strategy for bacterial wilt should follow the system approach that incorporates specific operational practices to reduce the likelihood of infection, establishment and growth of R. solanacearum in potato crops. Farmers and extension agents should follow below strategy to contain and manage bacterial wilt in potato /f_ield.

- Always use BW free seed potato and plant them in BW-free areas
- Use disease free seed potato and plant them in disease free areas or in a plot where potato or crops from Solanaceae family has not been grown before.