Public health response to COVID-19 epidemics using real-time genomic epidemiology and science communication

Anderson Brito PhD
Postdoctoral Associate
Grubaugh Lab

@ AndersonBrito_
@ anderson.brito@yale.edu
@ andersonbrito.github.io
COVID-19 timeline

The arrival of an invisible enemy

- 1st COVID-19 patient hospitalized in Wuhan
- Genome sequence of SARS-CoV-2
- 1st travel associated case identified in U.S.
- Travel restricted from Iran to U.S.
- 1st reported case in Connecticut
- 1st reported case outside of China (Thailand)
- Travel restricted from China to U.S.
- 1st "community acquired" case identified in U.S.
- Travel restricted from Europe to U.S.

Credit: Joseph Fauver
Early response to COVID-19

Joining efforts to respond to the first wave of cases in Connecticut

Before the first COVID-19 cases in Connecticut (on March 6th), Yale launched its SARS-CoV-2 surveillance initiatives

Multidisciplinary consortium of Yale laboratories: IMPACT

Yale SARS-CoV-2 Surveillance Initiatives

YSFPH
Albert Ko
Nathan Grubaugh
Anne Wyllie
Arnau Cassanovas
Many others...

YSM
Akiko Iwasaki
Craig Wilen
Maria Tokuyama
Alice Lu-Culligan
Many others...

YNHH
Charles Dela Cruz
Shelli Farhadian
Melissa Campbell
Alison Nelscon
Many others...

Public health response to COVID-19 epidemics using real-time genomic epidemiology and science communication
Our contribution

- Genomics
- Phylogenetics
- Science Communication

Public health response to COVID-19 epidemics using real-time genomic epidemiology and science communication
Genomics
Sample processing and testing

Supporting our local hospital (YNHH) during a public health crisis

Sample Collection

RNA Extraction & Testing

MinION Sequencing

Tiled Amplicon Generation

Sample Collection

RNA Extraction & Testing

MinION Sequencing

Tiled Amplicon Generation

Isabel Ott Chaney Kalinich Mary Petrone Chantal Vogels Anne Wyllie Nathan Grubaugh
Comparing primer-probe sets

 mContext

Except for one primer-probe set (RdRp-SARSr, Charité), all the others have shown comparable sensitivities.

Primer–probe sets used in the US (CDC N1 and N2) are consistent/sensitive enough to prevent false negatives.
Fast sequencing of positive samples

Getting an in-depth understanding about SARS-CoV-2 lineages

Day 1: we generated 9 genomes (>90% coverage at >20X depth) within 24 hours of receiving the RNA samples.

Sample Collection

MinION Sequencing

Tiled Amplicon Generation

RNA Extraction & Testing
Phylogenetics
Revealing the origins of the first lineages circulating in Connecticut

Coast-to-coast viral spread around early March 2020

Rapid phylogenetic analysis of 9 viral genomes using a Nextstrain pipeline revealed early patterns of viral spread

First introductions of SARS-CoV-2 in Connecticut likely came from the West Coast (WA) and from Europe (EU)

Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States

Emma Hodcroft
Estimating the risk of viral introductions

The impact of domestic or international flights at spreading the coronavirus

We selected 5 **domestic** and 5 **international** locations representing travel origins with the highest numbers of COVID-19 cases.

When travel ban from Europe was enacted, **domestic air travel** posed higher risk of viral spread in the U.S.

The **high COVID-19 prevalence** and the large **passenger volumes** within the US favored local viral spread.

From 9 to 241 genomes, week after week

More routes of viral spread were revealed

April 3rd, n=18
April 7th, n=13
April 14th, n=30
April 22nd, n=15
April 29th, n=16

May 5th, n=19
May 27th, n=05
June 9th, n=37
June 17th, n=38
June 24th, n=41
From 9 to 241 genomes, week after week

Importations from New York seeded most outbreaks in CT from mid-March
Science Communication
COVIDTracker

An online platform for sharing results, data, and protocols

We created an easy to maintain, online platform: covidtrackerCT.com

Weekly reports about the spread of COVID-19 in Connecticut

Open Science: sharing protocols, data and analysis pipelines

Accessible, jargon-free language to communicate our findings to the general audience and policymakers

We're using a variety of tools, including viral sequencing, case surveillance, test development, and wastewater surveillance, in order to learn more about how SARS-CoV-2 is spreading in Connecticut.

Chaney Kalinich

Cole Jensen

Peter Neugebauer

covidtrackerCT.com

Yale SARS-CoV-2 Surveillance Initiatives

Public health response to COVID-19 epidemics using real-time genomic epidemiology and science communication
Communicating science in real time

COVIDTracker: an online platform for sharing data, protocols and results

Informative articles

Weekly reports

Protocols

covidtrackerCT.com
Our approach

Samples, data analysis and communication

PLOS BIOLOGY

Real-time public health communication of local SARS-CoV-2 genomic epidemiology

Published: August 21, 2020 | https://doi.org/10.1371/journal.pbio.3000869
Concluding remarks

Our research shows that...

- **Collaborations** involving universities, hospitals and public health departments were **essential** to properly **respond to the epidemic** in Connecticut.

- **Quick access** and **processing** of COVID-19 samples by an **interdisciplinary team** were crucial to generate genomic data and make them available **in real time**.

- Accurate results obtained via **fast phylogenetic tools** (e.g. nextstrain) can provide **actionable** information about viral spread, even when genomic data is limited.

- **Clear and accessible** scientific content coming from researchers to the general public plays an **important role at fighting misinformation**.
Acknowledgements

Yale School of Public Health
Nathan Grubaugh
Joseph Fauver
Chantal Vogels
Mary Petrone
Kayoko Shioda
Hanna Ehrlich
Tara Alpert
Anne Wyllie
Chaney Kalinich
Peter Neugebauer
Cole Jensen
Isabell Ott
Jeannette Jiang
Emily Peterson
Robert Heimer
Albert Ko

Yale School of Medicine
Akiko Iwasaki
Saad Omer
Ellen Foxman

Yale School of Engineering and Applied Science
Jordan Peccia
Alessandro Zulli

Connecticut Agricultural Experiment Station
Doug Brackney

Yale New Haven Hospital
Shelli Farhadian

Nextstrain
Richard Neher
Trevor Bedford
Emma Hodcroft
James Hadfield
Thomas Sibley

Andersonbrito_
anderson.brito@yale.edu
andersonbrito.github.io